Metaheuristics
2.9 211

2.9 Other single-solution based

metaheuristics

Some other strategies used by S-metaheuristics to escape from local optima:
Smoothing
Noisy
Based on transformations of the landscape by changing the input data
GRASP

An iterative greedy heuristic to solve combinatorial optimization problems

Smoothing Methods

Initial search space

» Reduces:

e [Smoothed search space
» Number of local optima

» Basins of aftraction
» Does not change:

» Region of the global
optima

» After smoothing, any
S-metaheuristic (or even P-
metaheuristic) can be used. >

Search space

FIGURE 2.33 Search space smoothing that results in an easiest problem to solve. The
smoothed landscape has less local optima than the original one.

Smoothing Methods

A Obijective

» Start by alarge a —

smoothing factor |
andscape

» Use solution of the
smoothed landscape
as the initial solution
for the next iteration

» Decrease a every _
. . Solution of the
iteration original landscape

» «a = 1represents the \

Solution of smoothed

- Initial solution

Smoothed search space n

Smoothed search space n—1

Smoothed search space 1

Initial search space

original space

>

Search space

FIGURE 2.34 Successive smoothing of the landscape. The solution found at the step i will
guide the search at the iteration i 4+ 1 1n a more rugged landscape.

Smoothing Methods

Algorithm 2.15 Template of the smoothing algorithm.

Input: S-metaheuristic L S, oy, Instance [.

5 = 55 5 /* Generation of the initial solution */

o = o 5 /* Initialization of the smoothing factor */

Repeat
I = I(&): /* Smoothing operation of the instance [*/
s = LS(s, I'); /* Search using the instance [and the initial solution s */
o = g(w) ; /* Reduce the smoothing factor,e.g. o = a — 1 ¥/

Until « < 1 /* Original problem */
Output: Best solution found.

Smoothing Methods

» Example 2.38 — Smoothing operation for the TSP

>

>

>

A trivial case for TSP is where all the distances are equal: d;; = d,

- 1
d:n(n—l)zdij

i#j
Smoothing of the distances:
i@ d+(d;—a) ifd;=d
.. a f— _ _ _
N d—(d—dy) ifd;<d
dij(a) - d when a >» 1. Flat landscape represents the first instance.
d;j(a) = d;; when a = 1. Last landscape represents the original problem.

Normallize distances first: d;; = D;;/Dpax

Smoothing — main parameters

» Appropriate choice of
» The initial value of the smoothing factor a

» The confirolling strategy of the smoothing factor a

» The larger ay, the more tfime consuming the algorithm.

Noisy Method

» The data parameters are replaced by “noised” data.
At each iteration of the search, the noise is reduced.

v

» Forinstance, consider a graph G = (V, E) with weights w;; of the edges (i,).

The weights are replaced by

Winjoised = wy; + Pij
» The search terminates when the noise is low enough. The extreme stopping
criterion is when the mean and the standard deviation of the noise are

both O.

» Contrary to fraditional S-metaheuristics, an improving move may be
rejected in the noising algorithm.

Noisy Method — a more general way

» The noise is considered in computing the neighbor of a solution
Anoised(s,s’) = A(s,s") + py

» p is A noise changing at each iteration k
» Randomness occurs in a different way
» In the first method after fixing the noise, the local search can be deterministic.

» Inthe second method, randomness takes place at each iteration of the local
search

» The choice of noising method may have a great impact on performance.

Noisy Method - algorithm

Algorithm 2.16 Template of the noising method.

Input: r.

s = 5y /* Generation of the initial solution */

F = Fpa: > /* Initialization of the noising factor */

Repeat
A oised (5, 87) = A(s, 5") + r ;. /* Noising operation of [*/
§ = LS(s,r): /* Search using the noising factor r */
r = g(r) : /* Reduce the noising factor */

Until r = r,,;, /* Original problem */
QOutput: Best solution found.

Noisy Method — parameter tuning

» For other S-metaheuristics, some parameters must be tuned:
» Noise rate: The external values depending on the data ryin, max-

» Decreasing noise rate: Usually geometrical decreasing function (r = ra, a € (0,1)). Below is
another example.

» Probability distribution: Depends on A Noise rate A Noise rate
the problem, but usually uniform .
distribution. ;
R :\
‘I‘l’me TTme
(a) Linear decrease (b) Linear decrease interleaved with no noise

FIGURE 2.35 Different noising methods. (a) The noise rate is decreased linearly down to
0. (b) The noise decreases linearly, but “unperturbed™ local searches are applied from time to
time.

Noisy Method - example

Example 2.39 — Noising algorithm for graph partitioning

Input: A complete weighted (+/-) graph ¢ = (V, E)

Obj: Find a partition of ¥V into subsets in order to minimize the sum of the weights of
edges with both ends in the same subset.

A noise with a uniform distribution [—r,r] and an arithmetic decrease of the

noise rate r, may be applied.

>
>
>
>
>
>

>
>

>

Neighborhood: transferring a vertex from a subset to another one.
Tuning parameters

0.8Whax < Tmax < 0.95Wh0x, 0.15Wh0x < Tinin < 0.5Wp0,, WEIGhts range is [—Wiax, Wimaxl-
The total number of iterations depends on the time the user wants to spend.
B<a<?2p

a denotes the number of pairs (noised LS, unnoised LS) applied between two restarts
and B the number of restarts.

Where do we decrease the noise rate?

GRASP

» GRASP = Greedy Randomized Adaptive Search Procedure

» GRASP metaheuvuristic is an iterative greedy heuristic to solve combinatorial
optimization problems.

» Each iteration has two steps: construction and local search.

» Construction: A feasible solution is built using a randomized greedy
algorithm.

» The schema is repeated until a given number of iterations and the best
found solution

GRASP - algorithm

Algorithm 2.17 Template of the greedy randomized adaptive search procedure.

Input: Number of iterations.
Repeat
5 = Random-Greedy(seed) ; /* apply a randomized greedy heuristic */
s' = Local — Search(s) ; /* apply a local search algorithm to the solution */
Until Stopping criteria /* e.g. a given number of iterations */
Output: Best solution found.

GRASP - design

Main design questions: Greedy construction, Local search procedure

Greedy construction: At each iteration the elements that can be included in
the partial solution are ordered (decreasing value) in the list using local

heuristic. From this list, a subset is generated called restricted candidate list
(RCL).

» Cardinality-based criteria

» Value-based criteria: selecting the solutions that are better than a given threshold
(more common).

» Local search: Since the solutions found by the construction procedure are not
guaranteed to be local optima, it is beneficial to carry out a local search.
Traditionally, a simple local search but any other S-metaheuristic can be used.

GRASP - greedy randomized

algorithm

Algorithm 2.18 Template of the greedy randomized algorithm.

s = {} : /* Initial solution (null) */
Evaluate the incremental costs of all candidate elements ;
Repeat

Build the restricted candidate hst RCL ;

/* select a random element from the list RCL */

¢; = Random-Selection(RCL) ;

If s Ue; € F Then /* Test the feasibility of the solution */

s=s5Ueg; .

Reevaluate the incremental costs of candidate elements ;
Until Complete solution found.

2.11 Conclusions

Common concepts
for metaheuristics

Representation

Objective function
Constraint handling

Y
Common concepts
for S-metsheuristics

Initial solution
MNeighborhood
Incremental evaleation

Stopping criteria

Simulated annealing
Threshold accepting

Record-to-record travel

Local|search Tabu & h
Great deluge | abu seare
Demon algorithms _ _ _ Tabu Eat
___— MNeighbor selection L
Annealing schedule - Medium-tarm memory
- Long-term memaory
lterated local s
Guided local search _ Pesturbation method
Smoothing method - Acceptance criteria
MNoi ethod GRASP
o=y ¥ Variable neighborhood
et e s Randomized greedy search
change algorithm

- Meighborhoods for shaking
- Meighborhoods for local search

FIGURE 2.43 Common concepts and relationships in S-metaheuristics.

Conclusions

Landscape analysis

- Distribution measures
- Correlation measures

Design of metaheuristic

Representation
Objective function
Constraint handling

v

Design of a S-metaheuristic

Initial solution

Neighborhood

Incremental evaluation
Stopping criteria, and so on

v

Implementation of a S-metaheuristic

- From scrafch or no reuse

- Code reuse

- Design and code reuse (e.g., software
framework ParadisEO-MO)

Parameter tuning
Performance evaluation

FIGURE 2.44 Development process of a S-metaheuristic.

